Blog

Analyzing maintenance log data to predict system failures

Cyber-Physical Systems (CPS) are often very complex and require a tight interaction between hardware and software. As it happens in almost any software systems, also CPS  generate different kinds of logs of the activities performed, including correct operations, warnings, errors, etc. Frequently, the logs generated are specific to the different subsystems and are generated independently. Such logs contains a wealth of information that needs to be extracted and that can be analyzed in different ways to understand how the single subsystem behaves and even retrieve information about the behavior of the overall system. In particular, considering the generated logs, it is possible to:

  1. Analyze the behavior of a single subsystem looking at the data generated by each one in an independent way;
  2. Analyze the overall behavior of the system looking at the correlations among the data generated by the different subsystems

Such data are very useful to understand the behavior of a system and are often used to perform post-mortem analysis when some failures happen. However, such data could also be used to understand in a more comprehensive way how the system behaves through a real-time analysis able to monitor continuously the different subsystems and their interactions. In particular, it is possible to focus on preventing failures through predictive maintenance triggered by specific analysis.

Making predictions about system failures analyzing log files is possible but such predictions are strictly related to some characteristics of such files. In particular, some very important characteristics are: data generation frequency, information details, history.

The data generation frequency needs to be related to the prediction time and the time required to take proper actions. For example, if we need to detect a failure and take proper action in a few minutes, we need to use data generated with a higher frequency (e.g., in the scale of the seconds) and we cannot use data generated with a lower one (e.g., in the scale of the hours). This requirement affects the ability to make predictions and their usefulness to implement proper maintenance actions.

The information details provided need to include proper granularity and meaningful massages. In particular, it is important to get detailed information about errors, warnings, operations performed, status of the system, etc. The specific details required are tightly connected to the specific predictions that are needed. Moreover, the finer the granularity of the information, the higher are the chances of being able to create a proper prediction model.

High quality data history is required to build proper prediction models. However, just having a large dataset is not enough. Historical data need to be representative of the operating environment and include all the possible cases that may happen during  operations. In particular, it is required to have information about the log entries and the actual behavior of the system to create a reliable model of the reality.

The requirements described are just a first step towards the definition of a proper predictive maintenance model but they are essential. Moreover, the proper approaches and algorithms need to be selected based on the specific system and the related operating conditions.

Reference Architecture of the Portuguese Mantis Pilot

Introduction

The MANTIS Steel Bending Machine pilot aims at providing the use case owner – ADIRA – a worldwide remote maintenance service to its customers. The main goal is to improve its services by making available new maintenance capabilities with reduced costs, reduce response time, avoiding rework and allowing for better maintenance activities planning.

To this purpose existing ADIRA’s machines (starting with their high end machine model – the Greenbender) will be augmented with extra sensors, which together with information collected from existing sensors will be sent to the cloud to be analyzed. Results made available by the analysis process will be presented to machine operators or maintainers through a HMI interface.

adira greenbender gb-22040 MANTIS
Adira –  Greenbender GB-22040

A number of partners are involved into the development and testing of the modules, which regard the communication middleware (ISEP, UNINOVA), data  processing  and  analytics activities (INESCISEP), the HMI applications (ISEP), and a stakeholder providing a machine to be enhanced with the MANTIS innovations (ADIRA).

System Architecture

The distributed system being built responds to a reference architecture that is composed by a number of modules, the latter grouped into 4 logical blocks: the Machine under analysis, Data Analysis module, Visualization module, and the Middleware supporting inter-module communications.

architechture of the maintenance system for MANTIS
architecture of the maintenance system for MANTIS

Machine

Data regarding the machine under analysis are collected by means of sensors, which integrate with the machine itself. This logical block consists thus of data sources that will be used for failure detection, prognosis and diagnosis. This set of data sources comprises an ERP (Enterprise Resource Planning) system, data generated by the machine’s Computer Numerical Controller (CNC) and the safety programmable logical controller (PLC).

Middleware

This logical block operates through two basic modules. The first is the MANTIS Embedded PC, which is basically an application that can run on a low cost computer (like a Raspeberry Pi) or directly on the CNC (if powerful enough). This module is responsible for collecting the data from the CNC I/O and transmitting it to the Data Analysis engine for processing and is implemented as a communication API. When based on an external computer, this module also connects to the new wireless MANTIS sensors placed on the machine using Bluetooth Low Energy protocol (BLE). Communications are then supported by the RabbitMQ message oriented middleware, which takes care of proper routing of messages between peers. This middleware handles both AMQP and MQTT protocols to communicate between nodes.

The I/O module is used in order to extract raw information from the machine sensors which is collected by the existing PLC, made available on the Windows-based numerical controller through shared memory and then written to files. Our software collects sensor data from these files, thus completely isolating the MANTIS applications from the numerical controller’s application and from the PLC.

Data Analysis

This logical block takes care of Data Analysis and Prediction, and it exploits three main modules. The first is a set of prediction models used for the detection, prognosis and diagnosis of the machine failures. The second is an API that allows clients to request predictions from the models, and that can respond to different paradigms such as REST or message-queue based. Finally, the third module is a basic ETL subsystem (Extraction, Transformation and Loading) that is responsible for acquiring, preparing and recording the data that will be used for model generation, selection and testing. This last module is also used to process the analytics request data as the same model generation transformations are also required for prediction.

Visualization

This logical block consists of two modules, the human machine interface (HMI) and the Intelligent Maintenance DSS. The HMI is designed to be a web-based mobile application, and to be accessed via the network from any computer or tablet. The HMI is developed to work in two different modes, depending on which kind of user is accessing it. In fact, the HMI is developed to support two user types, the data analyst and the maintenance manager, allowing both of them to analyze the machine’s status, record failure and diagnostics related data. Moreover, the data analysis HMI provides an interface with the data analyst, allowing the consultation and analysis of data and results. On the other hand, the maintenance management HMI allows for consulting predicted events and suggested maintenance actions.

The second module is an Intelligent Maintenance DSS, which uses a Knowledge Base that uses diagnosis, prediction models and the data sent by sensors. On top of this Knowledge Base there is a Rule based Reasoning Engine that includes all the rules that are necessary to deduce new knowledge that helps the maintenance crew to diagnose failures.

Ongoing work

The work performed so far is well advanced and an integration event will occur in the near future where the interconnection between all systems will be tested and validated.

The demonstrator being built, will be evaluated according to the following criteria: prediction model performance (live data sets will be compared to model generation test   sets) and the applications usability (the user should access the required information easily, in order to facilitate failure detection and diagnosis).

Fast prototyping of service robot behavior for a cleaning and tidying task in maintenance

The MANTIS project is concerned with predictive maintenance on the basis of big data streams from large (industrial) operations. At the end of the processing pipe line, planning suggestions for maintenance actions will be the result. Usually, maintenance is performed by human operators.

However, with current developments in machine learning, AI and robotics, it becomes interesting to see what type of ‘corrective actions’ in maintenance could be performed by industrial service robots.

In industrial production lines it is common to observe fairly short times between failure, especially in long chains. Whereas individual components are often designed to function extremely well, for instance under a regime of ‘zero-defect manufacturing’, the performance of the line as a whole may be disappointing. What is more, the actions performed by human operators to solve the problems may be very mundane and simple, such as removing dirt due to fouling or lubricating critical components. With the current advances in robot hardware and software technology, it becomes increasingly attractive to automate such maintenance actions. Whereas maintenance in the form of module- or part replacement are too difficult for current state-of-the-art robotics, cleaning and tidying is definitely possible.

With this application domain in mind, a laboratory setup was designed for quickly developing a robotic maintenance task for the purpose of demonstration by a master student team (Francesco Bidoia, Rik Timmers, Marc Groefsema) under guidance of a PhD student (Amir Shantia). We were able to realize a rapid configuration of our existing mobile robot platform to realize simple cleaning and tidying actions, similar to what is needed in basic industrial maintenance tasks. The demonstration involves speech control, navigational autonomy, work piece approach and dynamic reactivity to three object types, using tool switching. Objects are considered to be either a) untouchable, or b) removable by hand, or to consist, c) of small fragments (cf. ‘dirt’) that needs to be brushed away. In three weeks, a full demonstration could be developed by the student team, using a mobile robot with a single arm that was designed earlier, for Robocup@Home tasks:

The robot in our demonstration uses the light-weight carbon-fiberarm by Kinova (http://www.kinovarobotics.com/), a self-made transport base, standard Kinect sensors (for generating 3D point clouds) and digital cameras for vision. Programming was done using the ROS environment, with a pre-existing code base in C++ and Python.It is evident that by using current commercial existing mobile platforms such as KUKA (http://www.kukarobotics.com/en/products/mobility/KMR_iiwa/), MIR (http://mobile-industrial-robots.com/en/multimedia-2/videos/) and Universal Robots (https://www.universal-robots.com/), a similar, more sturdy industry-level system can be constructed.

Watch the whole demonstration here:

 

1st CREMA/C2NET Industrial Workshop

The 1st CREMA/C2NET Industrial workshop will take place the 24th November at Orona Fundazioa facilities located in Hernani (Basque Country – Spain). The event, organised by CREMA and C2NET H2020 EU projects, is intended to present future trends of European Industry especially those related to digitalization technologies applied to manufacturing. High levels speakers from the Basque Government, the European Commission, and the Industry sector (ill give their expert vision.

Moreover, CREMA and C2NET will present findings generated in both projects highlighting their approaches to meet above challenges. Presentations and practical demonstrations will be made by partners of both projects to present innovative solutions based on digital platforms in the Cloud to boost collaboration among manufacturing companies. Advanced Cloud technologies and applications will be shown to allow manufacturing companies faster and more efficient decision making for a better use of their manufacturing assets. Different business models and exploitation strategies followed by both projects to bring their outcomes to the market will also be presented.

Some MANTIS partners such as MGEP, IKERLAN, TEKNIKER, MCC, FAGOR ARRASATE and GOIZPER will attend this event to know other EU projects approaches to deal with common research areas and to make new contacts for potential collaboration actions in the future.

There is still time for registration accessing the website of the event: http://www.crema-c2networkshop.com/. We encourage you to do so.

Agenda:

09:00 – 09:30

Registration

09:30 – 09:40

Opening session

Welcome and event presentation

·       Eduardo Saiz, IK4-IKERLAN –  CREMA Project Researcher & C2NET Project Manager

Basque Government short talk

·       Alexander Arriola, General Director of SPRI/Basque Government

9:40 – 10:00

First Keynote: Industry 4.0 Implementation Strategy

·       Eduardo Beltrán, Innovation & Technology Director of MONDRAGON Corporation

10:00 – 10:15

Digitising European Industry

·       Max Lemke, Head of Unit Components and Systems, European Commission, DG CONNECT

10:15 – 11:00

The CREMA / C2NET viewpoint on future Industrial trends and a taste of the services that can be deployed in the Industrial Arena

·       Tim Dellas, ASCORA – CREMA Project Coordinator

·       Jorge Rodriguez, ATOS – C2NET Project Coordinator

11:00 – 11:30

Coffee Break

11:30 – 12:15

CREMA – Cloud Services for the Manufacturing Sector

·       Jon Rodriguez, FAGOR ARRASATE – CREMA Use Case I: Machinery Maintenance WP Leader

·       Mikel Anasagasti, GOIZPER – CREMA Use Case I: Machinery Maintenance Partner

·       Aizea Lojo, IK4-IKERLAN – CREMA Project Manager

·       Jessica Gil, TENNECO – CREMA Use Case II: Automotive WP Leader

12:15 – 13:00

C2NET – The complete Networked solution for Industry

·       Raúl Poler, UPV – C2NET Processes Optimization of Manufacturing Assets WP Leader

·       Carlos Agostinho, UNINOVA – C2NET Continuous Data Collection Framework WP Leader

·       Jacques Lamothe, ARMINES – C2NET Tools for Agile Collaboration WP Leader

13:00 – 14:00

Lunch break

14:00 – 14:45

Second Keynote: Industry 4.0 – How to master challenges to exploit new business opportunities

·       Stefan Zimmermann, Head of Global Vertical Manufacturing, Retail and Transportation market at ATOS

14:45 – 15:15

Interactive Session: Feedback from audience to capture the Pros and Cons if Industry 4.0. What hurdles need to be overcome  from an Industrial viewpoint

·       Moderator: Gash Bhullar, TANet – CREMA Impact WP Leader

15:15 – 15:45

CREMA / C2NET Response to the Interactive Session and potential solutions to the Industry 4.0 Implementation and Deployment Strategies

·       Moderator: Gash Bhullar, TANet – CREMA Impact WP Leader

15:45 – 16:00

Coffee Break

16:30 – 17:00

Panel discussion

·       Moderator: Gash Bhullar, CREMA TANet – Impact WP Leader

 

Closing remarks

·       Eduardo Saiz, IK4-IKERLAN –  CREMA Project Researcher & C2NET Project Manager

Presentation of the Mantis Project at Sirris’ seminar: fleet-based analytics for data-driven operation and maintenance optimization

On October 24th Sirris organized an industrial seminar on the opportunities and challenges related to fleet-based data exploration. During this seminar, a general introduction to the MANTIS project was first given, followed by presentations from several partners within theMANTIS project including: the Mondragon University (press machines), the Eindhoven University of Technology (shaver manufacturing), 3E (Photovoltaic Plants), Ilias Solutions (Vehicles), Atlas Copco (compressors) and Sirris. The event was a real success with around 45 participants and offered participants via real-world use cases in the different industrial domains mentioned above the opportunity to see how data-driven analytics on a fleet of machines can optimize the operation and maintenance of those.

Sirris presentation MANTIS
Tom Tourwe introduced the MANTIS project

 

Mondragon presentation MANTIS
Urko Zurutuza presented the Press Machine Maintenance Use-Case

If you would like to have further information on the outcomes of this seminar, please contact Caroline Mair (caroline.mair@sirris.be)

Deep learning for predictive maintenance

There are two extreme approaches to predicting failures for predictive maintenance. The white box approach relies on manually constructed physical and mechanical models for predicting the failures. The black box approach, on the other hand, relies on failure prediction models constructed using statistical and machine learning methods based on the data gathered from a running system. The figure below illustrates such data driven failure prediction for a machine monitored by three sensors.

data driven failure prediction
data driven failure prediction

Machine learning algorithms are used to identify failure patterns in the sensor data that precede a machine failure. When such patterns are observed in operation, an alarm can be triggered to take corrective action to prevent or mitigate the eminent failure. For example, failure predictions can be used to optimize the maintenance actions, such as scheduling the service engineers or managing the spare parts storage to reduce the downtime cost.

Automatic feature extraction

An important part of modeling a failure predictor is selecting or constructing the right features, i.e. selecting existing features from the data set, or constructing derivative features, which are most suitable for solving the learning task.

Traditionally, the features are selected manually, relying on the experience of process engineers who understand the physical and mechanical processes in the analyzed system. Unfortunately, manual feature selection suffers from different kinds of bias and is very labor intensive. Moreover, the selected features are specific to a particular learning task, and cannot be easily reused in a different task (e.g. the features which are effective for predicting failures in one production line will not necessarily be effective in a different line).

Deep learning techniques investigated in the MANTIS project offer an alternative to manual feature selection.  It refers to a branch of machine learning based on algorithms which automatically extract abstract features from the raw data that are most suitable for solving a particular learning task. Predictive maintenance can benefit from such automatic feature extraction to reduce effort, cost and delay that are associated with extracting good features.

Sirris seminar on fleet-based analytics for data-driven operation and maintenance optimization

On October 24th Sirris is organizing in Belgium an industrial seminar on the opportunities and challenges related to fleet-based data exploration. During this event Belgian as well as other European industrial partners from the MANTIS project will present their experience with fleet-based analytics (based on use-cases from the MANTIS project).

Many companies operate a fleet of machines that have a similar, almost identical behaviour in terms of internal operation, application and usage, such as for example windmills, compressors and professional vehicles. This set of almost identical machines is defined as ‘a fleet’.

In addition, more and more, those machines are equipped with several (smart) sensors, that can capture data on operational temperature, vibrations, pressure and many other features, depending on the machine. In addition, the communication and data storage technologies are becoming ubiquitous, making it possible to gather the data in a central platform and derive insights into normal and anomalous behaviour across the entire fleet of machines. By comparing for example the behaviour of a single machine to the rest of the fleet, one can identify if a machine is underperforming due to misconfiguration or imminent failure. The analysis of this data can also help service and maintenance personnel to have a more detailed and optimised maintenance planning, e.g. ensuring an optimal distribution of the entire fleet in terms of remaining useful life, in order to manage the work load of the service engineers. Therefore, the exploitation of the data collected on a fleet of machines is a real asset for maintenance and service personnel and, at a larger scale, for an entire company.

You are interested in this event? Check out the event’s agenda and register here

Programme

13:00 – 13:15: Registration and coffee

13:15 – 13:30: Setting the scene (Sirris)

13:30 – 14:30: MANTIS project: Cyber Physical System based Proactive Collaborative Maintenance

    • Project goals and challenges by Sirris
    • Fagor use case (press machines) – title to be announced
    • Philips use case (shaver manufacturing) – title to be announced

14:30 – 15:30: Root cause analysis

    • Barco – Vitriol: let open source data science talk quality and business at Barco Projection
    • 3E – Data-driven Fault Detection for Photovoltaic Plants: Data Quality, Common Faults and Data Annotation
    • Atlas Copco – SMARTLINK & root-cause analysis on compressors worldwide to improve on operational efficiency

15:30 – 15:50: Coffee break

15:50 – 17:10: Failure prediction & Operational optimisation

    • Barco – LightLease Predicting Lamp Behaviour in Digital Cinema
    • Ilias – Towards Predictive Vehicle Fleet Management
    • Maintenance Partners – Performance optimisation and failure prediction of wind turbines
    • Pepite – Analytics for operational optimisation

17:10 – 17:30: Closing remarks (Sirris)

17:30 – Networking reception

MANTIS-Platform Requirements or How to Make Sure the Platform Fulfils Partner’s Needs

One of the most important tasks to ensure flawless working on different work packages is to have fully consolidated requirements towards the MANTIS platform. Not only is it important to have all different requirements aggregated, but also to know in which project tasks those requirements will be addressed, by whom and how to manage those during the project lifetime. To handle this challenge with excellence, MANTIS partners decided to do a 4-step approach in requirement definition towards the MANTIS platform.

Defining User Scenarios & Deriving Requirements

In the MANTIS project, we do have specific use cases we later on want to test the platform against. Each of these use cases detailed their scenarios and related them to the MANTIS objectives. From there on, requirements in the form of a table were compiled. Those requirements cover functional, non-functional, technological and business needs. As a result, we had the first form of requirements which – of course- still needed unification and consolidation.

Extending Maintenance Use Case Requirements by MANTIS Partner Requirements

This task focused on what technology can and should be used for the user scenarios. The main task members therefore were the technology providing partners. We also expected requirements originating from technology push of the providers. Those additional requirements were the second form of requirements we had which – again, of course – still needed unification and consolidation. Nonetheless, correlations to the user scenario requirements were already identified and noted.

Requirements and Project Objects Consolidation

The platform requirements and the user scenario requirements were revisited for consistency and updates. Furthermore, a refinement of the requirements was performed based on the early sketches of the MANTIS architecture. As a result, 45 different requirement categories were identified, 27 of those categories were then identified as “not to be addressed inside of MANTIS”, since those categories mainly were basic requirements towards a general platform architecture and not MANTIS specific.

 

MANTIS requirements categories
MANTIS requirements categories

 

Refinement of the Requirements

As the last task, which is currently still running strong, we wanted to match all those 900+ requirements that were identified and defined to the 45 defined requirement categories. At the time of writing this article, the matching is completed and 900 requirements could be reduced to about 330 MANTIS specific requirements. Also, the MANTIS specific requirement categories were matched to the different project task, to make sure that the requirements will definitely be addressed.

So what’s ahead: Definition of MANTIS platform requirements is near its end. What’s left to do is to choose a good way to manage the requirements during projects lifetime. As it seems, this will be done by separating Excel sheets according to tasks and categories. This will keep management of requirements handy and easy.

 

Matching Requirements to MANTIS requirement categories
Matching Requirements to MANTIS requirement categories

An integrated Mantis-Platform for Off-Road and Special Purpose Vehicles

Introduction

Off-Road and Special Purpose vehicles are used all over the world in various environmental conditions. They exist in all different kinds and formats and, within companies, a broad range of types of such vehicles will be in use.

Maintenance on these vehicles, be it preventive or corrective, can cause unavailability, having a negative impact on both productivity and efficiency. An overall objective regarding maintenance is to maximize the availability of the vehicles at the lowest maintenance cost. Therefore, a pro-active and preventive maintenance approach should lead to important savings, with higher availability.

The ILIAS approach

Most of these vehicles are already equipped with on-board HUMS systems/black boxes. The data generated by these on-board systems contain a broad range of information that can be used as input in a MANTIS-based platform in order to optimize the full maintenance strategy.

The diversity of HUMS systems, however, is very broad, even on the same type of vehicles. Each vehicle has its own configurations, interfaces, data formats, etc. Hence, there is a need to convert the collected data from various systems into a uniform and structured format in order to make them further exploitable.

This observation has led us to the conclusion that there are two viable approaches to building MANTIS-based platforms:

  • A per-vehicle type / HUMS system platform approach, aiming at an optimum maintenance strategy for a small number of equipment types.
  • An open platform approach that can be easily customized by the user to the type of vehicle/HUMS system(s) being used.

We opted for the second approach but have not limited it to the collection of data only but broadened it to a complete set of functionalities within the MANTIS-based platform.

Based on the experience and know-how gained from the collaboration within the MANTIS project and the architectural guidelines derived from it, ILIAS Solutions aims at building a platform that provides a complete solution from the readout of the black box until the optimization of the maintenance plans in an environment with high numbers of highly complex and mobile assets.

The ILIAS platform, therefore, provides users with an integrated set of user-friendly tools, permitting them to:

  • Import data from external sources like ERP systems, leading to a centralized data set. (Step 1)
  • Import raw data coming from any kind of HUMS system and cleanse them, based on automatic data wrangling, leading to state detection and health assessment. (Steps 2, 3, 4)
  • Make analysis of the data via different algorithms and translate them into rules/conditions to apply in the system. (Steps 5)
  • Define rules/conditions, including use and abuse rules, for triggering maintenance or other linked actions, based on the combined dataset. (Step 6)
  • Approve/disapprove the system-proposed maintenance actions and register them to make the system self-learning. (Steps 7, 8, 9)

This figure illustrates the approach.

MANTIS Approach proposed by ILIAS as a maintenance platform in Off-Road and Special Purpose vehivles
MANTIS Approach proposed by ILIAS as a maintenance platform in Off-Road and Special Purpose vehivles

The figure below illustrates how we go through different steps in implementing the platform, following more iterations to improve the system.

ILIAS is running different steps in implementing the platform
ILIAS is running different steps in implementing the platform

Conclusion

For Off-Road and Special Purpose vehicles, the overall objective regarding maintenance is to maximize the availability of the vehicles at the lowest maintenance cost. Thus, a proactive and preventive maintenance approach leads to important savings, with higher availability.

ILIAS Solutions aims at building a platform that provides a complete solution from the readout of the black box until the optimization of the maintenance plans in an environment with high numbers of highly complex and mobile assets.

This platform should be an open platform that can be easily customized by the user to the type of vehicle/HUMS system(s) in use and where a number of rule sets/conditions are defined in a user-friendly way.  This allows the system to trigger predictive maintenance actions. Analysis of broad data sets will lead to additional rules and conditions, optimizing the platform it selves.

Closure event for T-Rex European project: WorkShop “Industry 4.0: Extension of machinery life-cycle, component re-use and servitization”

T-Rex project – Lifecycle Extension Through Product Redesign And Repair, Renovation, Reuse, Recycle Strategies For Usage & Reusage-Oriented Business Models

In current global economy, manufacturers are under pressure to adapt to an ever-changing business environment. As a consequence, as part of Industry 4.0, new trends are gaining momentum, such as the servitization of manufacturing. The servitization can also be seen as a business model innovation of organization process and capabilities, where service-oriented activities increase. This leads in turn to revise the importance of certain strategies and technologies, such as reliability and life-cycle assessment, service engineering or advanced maintenance.

Previous to the MANTIS project, during last 3 years, T-REX project, funded under 7th framework factories of the future programme, has developed technologies oriented to the extension of machinery life-cycle, component re-use and servitization. Moreover, it has developed a framework and other support tools to facilitate new business opportunities to companies, in particular SMEs.

These activities are all contributing towards the development of Industry 4.0, in particular with respect to the extension of the manufacturing activities beyond the factory.

Ulma truck and screenshot of the trucks fleet Control panel at the BIEMH fair in Bilbao (June 2016)
Ulma truck and screenshot of the trucks fleet Control panel at the BIEMH fair in Bilbao (June 2016)

Workshop “Industry 4.0: Extension of machinery life-cycle, component re-use and servitization”

As closure event for the T-Rex project in September 2016 IK4-TEKNIKER and ULMA are organizing a workshop which aims to demonstrate the feasibility of service-oriented business models, in particular for SMEs, and will include direct feedback from manufacturing companies interested in extending servitization and re-use activities. Part of these activities will take advantage of the results obtained in T-REX project.

WorkShop programme and registration